Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 1009379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246891

RESUMO

Estrogen receptors were initially identified in the uterus, and later throughout the brain and body as intracellular, ligand-regulated transcription factors that affect genomic change upon ligand binding. However, rapid estrogen receptor signaling initiated outside of the nucleus was also known to occur via mechanisms that were less clear. Recent studies indicate that these traditional receptors, estrogen receptor-α and estrogen receptor-ß, can also be trafficked to act at the surface membrane. Signaling cascades from these membrane-bound estrogen receptors (mERs) not only rapidly effect cellular excitability, but can and do ultimately affect gene expression, as seen through the phosphorylation of CREB. A principal mechanism of neuronal mER action is through glutamate-independent transactivation of metabotropic glutamate receptors (mGluRs), which elicits multiple signaling outcomes. The interaction of mERs with mGluRs has been shown to be important in many diverse functions in females, including, but not limited to, reproduction and motivation. Here we review membrane-initiated estrogen receptor signaling in females, with a focus on the interactions between these mERs and mGluRs.


Assuntos
Receptores de Estrogênio , Receptores de Glutamato Metabotrópico , Estrogênios/metabolismo , Feminino , Glutamatos , Humanos , Ligantes , Motivação , Receptores de Estrogênio/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Reprodução
2.
J Neuroendocrinol ; 34(6): e13082, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35000221

RESUMO

The development of oestrogen positive feedback is a hallmark of female puberty. Both oestrogen and progesterone signalling are required for the functioning of this neuroendocrine feedback loop but the physiological changes that underlie the emergence of positive feedback remain unknown. Only after puberty does oestradiol (E2) facilitate progesterone synthesis in the rat female hypothalamus (neuroP), an event critical for positive feedback and the LH surge. We hypothesize that prior to puberty, these astrocytes have low levels of membrane oestrogen receptor alpha (ERα), which is needed for facilitation of neuroP synthesis. Thus, we hypothesized that prepubertal astrocytes are unable to respond to E2 with increased neuroP synthesis due a lack of membrane ERα. To test this, hypothalamic tissues and enriched primary hypothalamic astrocyte cultures were acquired from prepubertal (postnatal week 3) and post-pubertal (week 8) female mice. E2-facilitated neuroP was measured in the hypothalamus pre- and post-puberty, and hypothalamic astrocyte responses were measured after treatment with E2. Prior to puberty, E2-facilitated neuroP synthesis did not occur in the hypothalamus, and mERα expression was low in hypothalamic astrocytes, but E2-facilitated neuroP synthesis in the rostral hypothalamus and mERα expression increased post-puberty. The increase in mERα expression in hypothalamic astrocytes corresponded with a post-pubertal increase in caveolin-1 protein, PKA phosphorylation, and a more rapid [Ca2+ ]i flux in response to E2. Together, results from the present study indicate that E2-facilitated neuroP synthesis occurs in the rostral hypothalamus, develops during puberty, and corresponds to a post-pubertal increase in mERα levels in hypothalamic astrocytes.


Assuntos
Estradiol , Receptor alfa de Estrogênio , Animais , Astrócitos/metabolismo , Estradiol/fisiologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Feminino , Hipotálamo/metabolismo , Camundongos , Progesterona/metabolismo , Ratos , Maturidade Sexual
3.
J Neuroendocrinol ; 34(1): e13071, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34904297

RESUMO

Neural circuits in female rats are exposed to sequential estradiol and progesterone to regulate the release of luteinizing hormone (LH) and ultimately ovulation. Estradiol induces progesterone receptors (PGRs) in anteroventral periventricular nucleus (AVPV) kisspeptin neurons, and as estradiol reaches peak concentrations, neuroprogesterone (neuroP) synthesis is induced in hypothalamic astrocytes. This local neuroP signals to PGRs expressed in kisspeptin neurons to trigger the LH surge. We tested the hypothesis that neuroP-PGR signaling through Src family kinase (Src) underlies the LH surge. As observed in vitro, PGR and Src are co-expressed in AVPV neurons. Estradiol treatment increased the number of PGR immunopositive cells and PGR and Src colocalization. Furthermore, estradiol treatment increased the number of AVPV cells that had extranuclear PGR and Src in close proximity (< 40 nm). Infusion of the Src inhibitor (PP2) into the AVPV region of ovariectomized/adrenalectomized (ovx/adx) rats attenuated the LH surge in trunk blood collected 53 h post-estradiol (50 µg) injection that induced neuroP synthesis. Although PP2 reduced the LH surge in estradiol benzoate treated ovx/adx rats, activation of either AVPV PGR or Src in 2 µg estradiol-primed animals significantly elevated LH concentrations compared to dimethyl sulfoxide infused rats. Finally, antagonism of either AVPV PGR or Src blocked the ability of PGR or Src activation to induce an LH surge in estradiol-primed ovx/adx rats. These results indicate that neuroP, which triggers the LH surge, signals through an extranuclear PGR-Src signaling pathway.


Assuntos
Hormônio Luteinizante/metabolismo , Neurônios/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/fisiologia , Quinases da Família src/fisiologia , Animais , Feminino , Hipotálamo/metabolismo , Ovulação/sangue , Ovulação/metabolismo , Ratos , Ratos Long-Evans , Receptores de Progesterona/metabolismo , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismo
4.
J Neurosci ; 41(42): 8790-8800, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34470806

RESUMO

Social behaviors, including reproductive behaviors, often display sexual dimorphism. Lordosis, the measure of female sexual receptivity, is one of the most apparent sexually dimorphic reproductive behaviors. Lordosis is regulated by estrogen and progesterone (P4) acting within a hypothalamic-limbic circuit, consisting of the arcuate, medial preoptic, and ventromedial nuclei of the hypothalamus. Social cues are integrated into the circuit through the amygdala. The posterodorsal part of the medial amygdala (MeApd) is involved in sexually dimorphic social and reproductive behaviors, and sends projections to hypothalamic neuroendocrine regions. GABA from the MeApd appears to facilitate social behaviors, while glutamate may play the opposite role. To test these hypotheses, adult female vesicular GABA transporter (VGAT)-Cre and vesicular glutamate transporter 2 (VGluT2)-Cre mice were transfected with halorhodopsin (eNpHR)-expressing or channelrhodopsin-expressing adeno-associated viruses (AAVs), respectively, in the MeApd. The lordosis quotient (LQ) was measured following either photoinhibition of VGAT or photoexcitation of VGluT2 neurons, and brains were assessed for c-Fos immunohistochemistry (IHC). Photoinhibition of VGAT neurons in the MeApd decreased LQ, and decreased c-Fos expression within VGAT neurons, within the MeApd as a whole, and within the ventrolateral part of the ventromedial nucleus (VMHvl). Photoexcitation of VGluT2 neurons did not affect LQ, but did increase time spent self-grooming, and increased c-Fos expression within VGluT2 neurons in the MeApd. Neither condition altered c-Fos expression in the medial preoptic nucleus (MPN) or the arcuate nucleus (ARH). These data support a role for MeApd GABA in the facilitation of lordosis. Glutamate from the MeApd does not appear to be directly involved in the lordosis circuit, but appears to direct behavior away from social interactions.SIGNIFICANCE STATEMENT Lordosis, the measure of female sexual receptivity, is a sexually dimorphic behavior regulated within a hypothalamic-limbic circuit. Social cues are integrated through the amygdala, and the posterodorsal part of the medial amygdala (MeApd) is involved in sexually dimorphic social and reproductive behaviors. Photoinhibition of GABAergic neurons in the MeApd inhibited lordosis, while photoactivation of glutamate neurons had no effect on lordosis, but increased self-grooming. These data support a role for MeApd GABA in the facilitation of social behaviors and MeApd glutamate projections in anti-social interactions.


Assuntos
Complexo Nuclear Corticomedial/metabolismo , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Comportamento Social , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Animais , Feminino , Ácido Glutâmico/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
5.
PLoS One ; 16(8): e0256148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34407144

RESUMO

In females, estrogens have two main modes of action relating to gonadotropin secretion: positive feedback and negative feedback. Estrogen positive and negative feedback are controlled by different regions of the hypothalamus: the preoptic area/anterior portion (mainly the anteroventral periventricular nucleus, AVPV) of the hypothalamus is associated with estrogen positive feedback while the mediobasal hypothalamus (mainly the arcuate nucleus of the hypothalamus, ARH), is associated with estrogen negative feedback. In this study, we examined the temporal pattern of gene transcription in these two regions following estrogen treatment. Adult, ovariectomized, Long Evans rats received doses of estradiol benzoate (EB) or oil every 4 days for 3 cycles. On the last EB priming cycle, hypothalamic tissues were dissected into the AVPV+ and ARH+ at 0 hrs (baseline/oil control), 6 hrs, or 24 hrs after EB treatment. RNA was extracted and sequenced using bulk RNA sequencing. Differential gene analysis, gene ontology, and weighted correlation network analysis (WGCNA) was performed. Overall, we found that the AVPV+ and ARH+ respond differently to estradiol stimulation. In both regions, estradiol treatment resulted in more gene up-regulation than down-regulation. S100g was very strongly up-regulated by estradiol in both regions at 6 and 24 hrs after EB treatment. In the AVPV+ the highest number of differentially expressed genes occurred 24 hrs after EB. In the ARH+, the highest number of genes differentially expressed by EB occurred between 6 and 24 hrs after EB, while in the AVPV+, the fewest genes changed their expression between these time points, demonstrating a temporal difference in the way that EB regulates transcription these two areas. Several genes strongly implicated in gonadotropin release were differentially affected by estradiol including Esr1, encoding estrogen receptor-α and Kiss1, encoding kisspeptin. As an internal validation, Kiss1 was up-regulated in the AVPV+ and down-regulated in the ARH+. Gene network analysis revealed the vastly different clustering of genes modulated by estradiol in the AVPV+ compared with the ARH+. These results indicate that gene expression in these two hypothalamic regions have specific responses to estradiol in timing and direction.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Estradiol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo Anterior/metabolismo , Hipotálamo/metabolismo , Análise de Sequência de RNA/métodos , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo Anterior/efeitos dos fármacos , Kisspeptinas/metabolismo , Modelos Animais , Ovariectomia/métodos , Ratos , Ratos Long-Evans
6.
Endocrinology ; 162(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34379733

RESUMO

Kisspeptin, encoded by Kiss1, stimulates gonadotropin-releasing hormone neurons to govern reproduction. In female rodents, estrogen-sensitive kisspeptin neurons in the rostral anteroventral periventricular (AVPV) hypothalamus are thought to mediate estradiol (E2)-induced positive feedback induction of the preovulatory luteinizing hormone (LH) surge. AVPV kisspeptin neurons coexpress estrogen and progesterone receptors (PGRs) and are activated during the LH surge. While E2 effects on kisspeptin neurons have been well studied, progesterone's regulation of kisspeptin neurons is less understood. Using transgenic mice lacking PGR exclusively in kisspeptin cells (termed KissPRKOs), we previously demonstrated that progesterone action specifically in kisspeptin cells is essential for ovulation and normal fertility. Unlike control females, KissPRKO females did not generate proper LH surges, indicating that PGR signaling in kisspeptin cells is required for positive feedback. However, because PGR was knocked out from all kisspeptin neurons in the brain, that study was unable to determine the specific kisspeptin population mediating PGR action on the LH surge. Here, we used targeted Cre-mediated adeno-associated virus (AAV) technology to reintroduce PGR selectively into AVPV kisspeptin neurons of adult KissPRKO females, and tested whether this rescues occurrence of the LH surge. We found that targeted upregulation of PGR in kisspeptin neurons exclusively in the AVPV is sufficient to restore proper E2-induced LH surges in KissPRKO females, suggesting that this specific kisspeptin population is a key target of the necessary progesterone action for the surge. These findings further highlight the critical importance of progesterone signaling, along with E2 signaling, in the positive feedback induction of LH surges and ovulation.


Assuntos
Hipotálamo Anterior/metabolismo , Hormônio Luteinizante/metabolismo , Neurônios/metabolismo , Receptores de Progesterona/fisiologia , Animais , Estradiol/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Retroalimentação Fisiológica/fisiologia , Feminino , Hipotálamo Anterior/citologia , Hipotálamo Anterior/efeitos dos fármacos , Kisspeptinas/metabolismo , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Progesterona/farmacologia , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
Transgend Health ; 5(4): 246-257, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376803

RESUMO

Purpose: Pubertal suppression is standard of care for early pubertal transgender youth to prevent the development of undesired and distressing secondary sex characteristics incongruent with gender identity. Preliminary evidence suggests pubertal suppression improves mental health functioning. Given the widespread changes in brain and cognition that occur during puberty, a critical question is whether this treatment impacts neurodevelopment. Methods: A Delphi consensus procedure engaged 24 international experts in neurodevelopment, gender development, puberty/adolescence, neuroendocrinology, and statistics/psychometrics to identify priority research methodologies to address the empirical question: is pubertal suppression treatment associated with real-world neurocognitive sequelae? Recommended study approaches reaching 80% consensus were included in the consensus parameter. Results: The Delphi procedure identified 160 initial expert recommendations, 44 of which ultimately achieved consensus. Consensus study design elements include the following: a minimum of three measurement time points, pubertal staging at baseline, statistical modeling of sex in analyses, use of analytic approaches that account for heterogeneity, and use of multiple comparison groups to minimize the limitations of any one group. Consensus study comparison groups include untreated transgender youth matched on pubertal stage, cisgender (i.e., gender congruent) youth matched on pubertal stage, and an independent sample from a large-scale youth development database. The consensus domains for assessment includes: mental health, executive function/cognitive control, and social awareness/functioning. Conclusion: An international interdisciplinary team of experts achieved consensus around primary methods and domains for assessing neurodevelopmental effects (i.e., benefits and/or difficulties) of pubertal suppression treatment in transgender youth.

8.
Artigo em Inglês | MEDLINE | ID: mdl-32670203

RESUMO

Neural circuits in female rats sequentially exposed to estradiol and progesterone underlie so-called estrogen positive feedback that induce the surge release of pituitary luteinizing hormone (LH) leading to ovulation and luteinization of the corpus hemorrhagicum. It is now well-established that gonadotropin releasing hormone (GnRH) neurons express neither the reproductively critical estrogen receptor-α (ERα) nor classical progesterone receptor (PGR). Estradiol from developing ovarian follicles acts on ERα-expressing kisspeptin neurons in the rostral periventricular region of the third ventricle (RP3V) to induce PGR expression, and kisspeptin release. Circulating estradiol levels that induce positive feedback also induce neuroprogesterone (neuroP) synthesis in hypothalamic astrocytes. This local neuroP acts on kisspeptin neurons that express PGR to augment kisspeptin expression and release needed to stimulate GnRH release, triggering the LH surge. In vitro and in vivo studies demonstrate that neuroP signaling in kisspeptin neurons occurs through membrane PGR activation of Src family kinase (Src). This signaling cascade has been also implicated in PGR signaling in the arcuate nucleus of the hypothalamus, suggesting that Src may be a common mode of membrane PGR signaling. Sexual maturation requires that signaling between neuroP synthesizing astrocytes, kisspeptin and GnRH neurons be established. Prior to puberty, estradiol does not facilitate the synthesis of neuroP in hypothalamic astrocytes. During pubertal development, levels of membrane ERα increase in astrocytes coincident with an increase of PKA phosphorylation needed for neuroP synthesis. Currently, it is not clear whether these developmental changes occur in existing astrocytes or are due to a new population of astrocytes born during puberty. However, strong evidence suggests that it is the former. Blocking new cell addition during puberty attenuates the LH surge. Together these results demonstrate the importance of pubertal maturation involving hypothalamic astrocytes, estradiol-induced neuroP synthesis and membrane-initiated progesterone signaling for the CNS control of ovulation and reproduction.


Assuntos
Astrócitos/citologia , Astrócitos/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Hormônio Luteinizante/metabolismo , Progesterona/metabolismo , Maturidade Sexual , Animais , Humanos , Neurônios/metabolismo , Ovulação , Reprodução
9.
J Neuroendocrinol ; 31(6): e12725, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31050077

RESUMO

The two isoforms of the nuclear estrogen receptor, ERα and ERß are widely expressed in the central nervous system. Although they were first described as nuclear receptors, both isoforms have also been found at the cell membrane where they mediate cell signaling. Surface biotinylation studies using neuronal and glial primary cultures label an alternatively spliced form of ERα. The 52 kDa protein, ERαΔ4, is missing exon 4 and is highly expressed in membrane fractions derived from cultured cells. In vivo, both full-length (66 kDa) ERα and ERαΔ4 are present in membrane fractions. In response to estradiol, full-length ERα and ERαΔ4 are initially trafficked to the membrane, and then internalized in parallel. Previous studies determined that only the full-length ERα associates with metabotropic glutamate receptor-1a (mGluR1a), initiating cellular signaling. The role of ERαΔ4, remained to be elucidated. Here, we report ERαΔ4 trafficking, association with mGluR2/3, and downstream signaling in female rat arcuate nucleus (ARH). Caveolin (CAV) proteins are needed for ER transport to the cell membrane, and using co-immunoprecipitation CAV-3 was shown to associate with ERαΔ4. CAV-3 was necessary for ERαΔ4 trafficking to the membrane: in the ARH, microinjection of CAV-3 siRNA reduced CAV-3 and ERαΔ4a in membrane fractions by 50%, and 60%, respectively. Moreover, co-immunoprecipitation revealed that ERαΔ4 associated with inhibitory mGluRs, mGluR2/3. Estrogen benzoate (EB) treatment (5 µg; s.c.; every 4 days; three cycles) reduced levels of cAMP, an effect attenuated by antagonizing mGluR2/3. Following EB treatment, membrane levels of ERαΔ4 and mGluR2/3 were reduced implying ligand-induced internalization. These results implicate ERαΔ4 in an estradiol-induced inhibitory cell signaling in the ARH.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Caveolina 3/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Receptor alfa de Estrogênio/genética , Éxons/genética , Feminino , Isoformas de Proteínas , Transporte Proteico , Ratos Long-Evans
10.
Cell ; 176(5): 1206-1221.e18, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30773317

RESUMO

Social behaviors, including behaviors directed toward young offspring, exhibit striking sex differences. Understanding how these sexually dimorphic behaviors are regulated at the level of circuits and transcriptomes will provide insights into neural mechanisms of sex-specific behaviors. Here, we uncover a sexually dimorphic role of the medial amygdala (MeA) in governing parental and infanticidal behaviors. Contrary to traditional views, activation of GABAergic neurons in the MeA promotes parental behavior in females, while activation of this population in males differentially promotes parental versus infanticidal behavior in an activity-level-dependent manner. Through single-cell transcriptomic analysis, we found that molecular sex differences in the MeA are specifically represented in GABAergic neurons. Collectively, these results establish crucial roles for the MeA as a key node in the neural circuitry underlying pup-directed behaviors and provide important insight into the connection between sex differences across transcriptomes, cells, and circuits in regulating sexually dimorphic behavior.


Assuntos
Complexo Nuclear Corticomedial/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Comportamento Animal/fisiologia , Complexo Nuclear Corticomedial/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Poder Familiar , Fatores Sexuais , Comportamento Social
12.
Neuroendocrinology ; 106(2): 101-115, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28384629

RESUMO

Positive feedback on gonadotropin release requires not only estrogen but also progesterone to activate neural circuits. In rodents, ovarian estradiol (E2) stimulates progesterone synthesis in hypothalamic astrocytes (neuroP), needed for the luteinizing hormone (LH) surge. Kisspeptin (kiss) neurons are the principal stimulators of gonadotropin-releasing hormone neurons, and disruption of kiss signaling abrogates the LH surge. Similarly, blocking steroid synthesis in the hypothalamus or deleting classical progesterone receptor (PGR) selectively in kiss neurons prevents the LH surge. These results suggest a synergistic action of E2 and progesterone in kiss neurons to affect gonadotropin release. The mHypoA51, immortalized kiss-expressing neuronal cell line derived from adult female mice, is a tractable model for examining integration of steroid signaling underlying estrogen positive feedback. Here, we report that kiss neurons in vitro integrate E2 and progesterone signaling to increase levels of kiss translation and release. mHypoA51 neurons expressed nonclassical membrane progesterone receptors (mPRα and mPRß) and E2-inducible PGR, required for progesterone-augmentation of E2-induced kiss expression. With astrocyte-conditioned media or in mHypoA51-astrocyte co-culture, neuroP augmented stimulatory effects of E2 on kiss protein. Progesterone activation of classical, membrane-localized PGR led to activation of MAPK and Src kinases. Importantly, progesterone or Src activation induced release of kiss from E2-primed mHypoA51 neurons. Consistent with previous studies, the present results provide compelling evidence that the interaction of E2 and progesterone stimulates kiss expression and release. Further, these results demonstrate a mechanism though which peripheral E2 may prime kiss neurons to respond to neuroP, mediating estrogen positive feedback.


Assuntos
Estrogênios/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Progesterona/metabolismo , Animais , Astrócitos/metabolismo , Linhagem Celular , Técnicas de Cocultura , Meios de Cultivo Condicionados , Receptor alfa de Estrogênio/metabolismo , Estrogênios/administração & dosagem , Retroalimentação Fisiológica/fisiologia , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Progesterona/administração & dosagem , Biossíntese de Proteínas/fisiologia , Receptores de Progesterona/metabolismo , Quinases da Família src/metabolismo
13.
Trends Neurosci ; 40(11): 654-666, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28969926

RESUMO

Over the past few years our understanding of estrogen signaling in the brain has expanded rapidly. Estrogens are synthesized in the periphery and in the brain, acting on multiple receptors to regulate gene transcription, neural function, and behavior. Various estrogen-sensitive signaling pathways often operate in concert within the same cell, increasing the complexity of the system. In females, estrogen concentrations fluctuate over the estrous/menstrual cycle, dynamically modulating estrogen receptor (ER) expression, activity, and trafficking. These dynamic changes influence multiple behaviors but are particularly important for reproduction. Using the female rodent model, we review our current understanding of estradiol signaling in the regulation of sexual receptivity.


Assuntos
Encéfalo/metabolismo , Estradiol/metabolismo , Reprodução/fisiologia , Animais , Feminino , Receptores de Estrogênio/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-28790975

RESUMO

It is becoming clear that steroid hormones act not only by binding to nuclear receptors that associate with specific response elements in the nucleus but also by binding to receptors on the cell membrane. In this newly discovered manner, steroid hormones can initiate intracellular signaling cascades which elicit rapid effects such as release of internal calcium stores and activation of kinases. We have learned much about the translocation and signaling of steroid hormone receptors from investigations into estrogen receptor α, which can be trafficked to, and signal from, the cell membrane. It is now clear that progesterone (P4) can also elicit effects that cannot be exclusively explained by transcriptional changes. Similar to E2 and its receptors, P4 can initiate signaling at the cell membrane, both through progesterone receptor and via a host of newly discovered membrane receptors (e.g., membrane progesterone receptors, progesterone receptor membrane components). This review discusses the parallels between neurotransmitter-like E2 action and the more recently investigated non-classical P4 signaling, in the context of reproductive behaviors in the rodent.

15.
Front Syst Neurosci ; 11: 42, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642689

RESUMO

The hypothalamus is most often associated with innate behaviors such as is hunger, thirst and sex. While the expression of these behaviors important for survival of the individual or the species is nested within the hypothalamus, the desire (i.e., motivation) for them is centered within the mesolimbic reward circuitry. In this review, we will use female sexual behavior as a model to examine the interaction of these circuits. We will examine the evidence for a hypothalamic circuit that regulates consummatory aspects of reproductive behavior, i.e., lordosis behavior, a measure of sexual receptivity that involves estradiol membrane-initiated signaling in the arcuate nucleus (ARH), activating ß-endorphin projections to the medial preoptic nucleus (MPN), which in turn modulate ventromedial hypothalamic nucleus (VMH) activity-the common output from the hypothalamus. Estradiol modulates not only a series of neuropeptides, transmitters and receptors but induces dendritic spines that are for estrogenic induction of lordosis behavior. Simultaneously, in the nucleus accumbens of the mesolimbic system, the mating experience produces long term changes in dopamine signaling and structure. Sexual experience sensitizes the response of nucleus accumbens neurons to dopamine signaling through the induction of a long lasting early immediate gene. While estrogen alone increases spines in the ARH, sexual experience increases dendritic spine density in the nucleus accumbens. These two circuits appear to converge onto the medial preoptic area where there is a reciprocal influence of motivational circuits on consummatory behavior and vice versa. While it has not been formally demonstrated in the human, such circuitry is generally highly conserved and thus, understanding the anatomy, neurochemistry and physiology can provide useful insight into the motivation for sexual behavior and other innate behaviors in humans.

16.
J Neurosci ; 36(45): 11449-11458, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27911748

RESUMO

Over the past two decades, the classical understanding of steroid action has been updated to include rapid, membrane-initiated, neurotransmitter-like functions. While steroids were known to function on very short time spans to induce physiological and behavioral changes, the mechanisms by which these changes occur are now becoming more clear. In avian systems, rapid estradiol effects can be mediated via local alterations in aromatase activity, which precisely regulates the temporal and spatial availability of estrogens. Acute regulation of brain-derived estrogens has been shown to rapidly affect sensorimotor function and sexual motivation in birds. In rodents, estrogens and progesterone are critical for reproduction, including preovulatory events and female sexual receptivity. Membrane progesterone receptor as well as classical progesterone receptor trafficked to the membrane mediate reproductive-related hypothalamic physiology, via second messenger systems with dopamine-induced cell signals. In addition to these relatively rapid actions, estrogen membrane-initiated signaling elicits changes in morphology. In the arcuate nucleus of the hypothalamus, these changes are needed for lordosis behavior. Recent evidence also demonstrates that membrane glucocorticoid receptor is present in numerous cell types and species, including mammals. Further, membrane glucocorticoid receptor influences glucocorticoid receptor translocation to the nucleus effecting transcriptional activity. The studies presented here underscore the evidence that steroids behave like neurotransmitters to regulate CNS functions. In the future, we hope to fully characterize steroid receptor-specific functions in the brain.


Assuntos
Encéfalo/fisiologia , Neurotransmissores/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Esteroides/metabolismo , Transmissão Sináptica/fisiologia , Animais , Medicina Baseada em Evidências , Humanos , Modelos Neurológicos
17.
Compr Physiol ; 5(3): 1211-22, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26140715

RESUMO

The discoveries of rapid, membrane-initiated steroid actions and central nervous system steroidogenesis have changed our understanding of the neuroendocrinology of reproduction. Classical nuclear actions of estradiol and progesterone steroids affecting transcription are essential. However, with the discoveries of membrane-associated steroid receptors, it is becoming clear that estradiol and progesterone have neurotransmitter-like actions activating intracellular events. Ultimately, membrane-initiated actions can influence transcription. Estradiol membrane-initiated signaling (EMS) modulates female sexual receptivity and estrogen feedback regulating the luteinizing hormone (LH) surge. In the arcuate nucleus, EMS activates a lordosis-regulating circuit that extends to the medial preoptic nucleus and subsequently to the ventromedial nucleus (VMH)--the output from the limbic and hypothalamic regions. Here, we discuss how EMS leads to an active inhibition of lordosis behavior. To stimulate ovulation, EMS facilitates astrocyte synthesis of progesterone (neuroP) in the hypothalamus. Regulation of GnRH release driving the LH surge is dependent on estradiol-sensitive kisspeptin (Kiss1) expression in the rostral periventricular nucleus of the third ventricle (RP3V). NeuroP activation of the LH surge depends on Kiss1, but the specifics of signaling have not been well elucidated. RP3V Kiss1 neurons appear to integrate estradiol and progesterone information which feeds back onto GnRH neurons to stimulate the LH surge. In a second population of Kiss1 neurons, estradiol suppresses the surge but maintains tonic LH release, another critical component of the estrous cycle. Together, evidence suggests that regulation of reproduction involves membrane action of steroids, some of which are synthesized in the brain.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Receptores de Estradiol/metabolismo , Reprodução , Transdução de Sinais , Animais , Encéfalo/metabolismo , Feminino , Gonadotropinas Hipofisárias/metabolismo , Humanos , Kisspeptinas/metabolismo
18.
Endocrinology ; 156(6): 2162-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25730107

RESUMO

The neuropeptide kisspeptin is essential for sexual maturation and reproductive function. In particular, kisspeptin-expressing neurons in the anterior rostral periventricular area of the third ventricle are generally recognized as mediators of estrogen positive feedback for the surge release of LH, which stimulates ovulation. Estradiol induces kisspeptin expression in the neurons of the rostral periventricular area of the third ventricle but suppresses kisspeptin expression in neurons of the arcuate nucleus that regulate estrogen-negative feedback. To focus on the intracellular signaling and response to estradiol underlying positive feedback, we used mHypoA51 cells, an immortalized line of kisspeptin neurons derived from adult female mouse hypothalamus. mHypoA51 neurons express estrogen receptor (ER)-α, classical progesterone receptor (PR), and kisspeptin, all key elements of estrogen-positive feedback. As with kisspeptin neurons in vivo, 17ß-estradiol (E2) induced kisspeptin and PR in mHypoA51s. The ERα agonist, 1,3,5-Tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole, produced similar increases in expression, indicating that these events were mediated by ERα. However, E2-induced PR up-regulation required an intracellular ER, whereas kisspeptin expression was stimulated through a membrane ER activated by E2 coupled to BSA. These data suggest that anterior hypothalamic kisspeptin neurons integrate both membrane-initiated and classical nuclear estrogen signaling to up-regulate kisspeptin and PR, which are essential for the LH surge.


Assuntos
Estrogênios/farmacologia , Hipotálamo Anterior/citologia , Kisspeptinas/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Células Cultivadas , Estradiol/farmacologia , Feminino , Kisspeptinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
19.
PLoS One ; 10(3): e0120530, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803606

RESUMO

Estradiol (E2) action in the nervous system is the result of both direct nuclear and membrane-initiated signaling (EMS). E2 regulates membrane estrogen receptor-α (ERα) levels through opposing mechanisms of EMS-mediated trafficking and internalization. While ß-arrestin-mediated mERα internalization has been described in the cortex, a role of ß-arrestin in EMS, which underlies multiple physiological processes, remains undefined. In the arcuate nucleus of the hypothalamus (ARH), membrane-initiated E2 signaling modulates lordosis behavior, a measure of female sexually receptivity. To better understand EMS and regulation of ERα membrane levels, we examined the role of ß-arrestin, a molecule associated with internalization following agonist stimulation. In the present study, we used an immortalized neuronal cell line derived from embryonic hypothalamic neurons, the N-38 line, to examine whether ß-arrestins mediate internalization of mERα. ß-arrestin-1 (Arrb1) was found in the ARH and in N-38 neurons. In vitro, E2 increased trafficking and internalization of full-length ERα and ERαΔ4, an alternatively spliced isoform of ERα, which predominates in the membrane. Treatment with E2 also increased phosphorylation of extracellular-signal regulated kinases 1/2 (ERK1/2) in N-38 neurons. Arrb1 siRNA knockdown prevented E2-induced ERαΔ4 internalization and ERK1/2 phosphorylation. In vivo, microinfusions of Arrb1 antisense oligodeoxynucleotides (ODN) into female rat ARH knocked down Arrb1 and prevented estradiol benzoate-induced lordosis behavior compared with nonsense scrambled ODN (lordosis quotient: 3 ± 2.1 vs. 85.0 ± 6.0; p < 0.0001). These results indicate a role for Arrb1 in both EMS and internalization of mERα, which are required for the E2-induction of female sexual receptivity.


Assuntos
Arrestinas/metabolismo , Estradiol/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Arrestinas/genética , Linhagem Celular , Estradiol/análogos & derivados , Receptor alfa de Estrogênio/metabolismo , Feminino , Hipotálamo/citologia , Sistema de Sinalização das MAP Quinases , Masculino , Postura , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Ratos Long-Evans , Reação em Cadeia da Polimerase em Tempo Real , Comportamento Sexual Animal , beta-Arrestina 1 , beta-Arrestinas
20.
Neuroendocrinology ; 96(2): 103-10, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22538318

RESUMO

Over the decades, our understanding of estrogen receptor (ER) function has evolved. Today we are confronted by at least two nuclear ERs, ERα and ERß, and a number of putative membrane ERs, including ERα, ERß, ER-X, GPR30 and Gq-mER. These receptors all bind estrogens or at least estrogenic compounds and activate intracellular signaling pathways. In some cases, a well-defined pharmacology and physiology has been discovered. In other cases, the identity or the function remains to be elucidated. This mini-review attempts to synthesize our understanding of 17ß-estradiol membrane signaling within hypothalamic circuits involved in homeostatic functions, focusing on reproduction and energy balance.


Assuntos
Membrana Celular/metabolismo , Hipotálamo/citologia , Hipotálamo/fisiologia , Receptores de Estrogênio/metabolismo , Transdução de Sinais/fisiologia , Animais , Membrana Celular/efeitos dos fármacos , Estradiol/metabolismo , Estradiol/farmacologia , Humanos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...